Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

نویسندگان

  • Seunghee Park
  • Junkyeong Kim
چکیده

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works. Keywords—Underwater Concrete, Rebound Hardness, Schmidt hammer, Ultrasonic Pulse Velocity, Ultrasonic Sensor, Artificial Neural Networks, ANN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Lightweight Aggregate Concrete Compressive Strength

Nowadays, the better performance of lightweight structures during earthquake has resulted in using lightweight concrete more than ever. However, determining the compressive strength of concrete used in these structures during their service through a none-destructive test is a popular and useful method.  One of the main methods of non-destructive testing in the assessment of compressive strength...

متن کامل

Estimation of mechanical and durability properties of self-compacting concrete with fibers using ultrasonic pulse velocity

In this research, the performance of ultrasonic pulse velocity (UPV) in concrete is examined as a nondestructive experiment in order to estimate mechanical (compressive and tensile strength) and durability (water absorption) properties of fiber-reinforced self-compacted concrete For this purpose 11 mixture designs containing 3 types of fibers (steel: 0.1, 0.2, 0.3 and 0.4 percent by volume, Pol...

متن کامل

Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.

Ultrasonic pulse velocity technique is one of the most popular non-destructive techniques used in the assessment of concrete properties. However, it is very difficult to accurately evaluate the concrete compressive strength with this method since the ultrasonic pulse velocity values are affected by a number of factors, which do not necessarily influence the concrete compressive strength in the ...

متن کامل

Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines

Non-destructive testing (NDT) methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic p...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014